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Techniques of bifurcation theory are used to study the porous-medium analogue of 
thc classical Rayleigh-Bdnard problem, Lapwood convection in a two-dimensional 
saturated porous cavity heated from bclow. The focus of the study concerns the 
destabilization, through symmetry-preserving Hopf bifurcations, of the various 
stable convcctive flow patterns that can form in a rcctangular cavity. We show how 
the limits of stability of steady convection in a porous medium can be determined by 
bifurcation techniques that locate Hopf bifurcations, and we predict a surprisingly 
complex evolution of the Hopf bifurcation along the unicellular branch as the aspect 
ratio varies. Thc continuation methods that we adopt rc7:eal interactions of Hopf 
bifurcations with limit points that signal complicated dynamical behaviour for 
certain container sizes. The study demonstrates the role of Hopf bifurcation in 
dest.abilizing completely the unicellular flow at aspect ratios greater than 2.691. A 
simple relationship between symmetry-preserving Hopf bifurcations from the 
alternative steady flows is also derived, and used to define upper limits on the 
stability of the alternativc steady flows and the thresholds for oscillatory convection 
as a function of aspect ratio. 

1. Introduction 
There have been numerous studies over the years of natural convection inside a 

two-dimensional rectangular saturated porous cavity heated from below (see Bories 
1985). The majority of past studies have concentrated on steady flows in cavities of 
varying aspect ratio and isothermality conditions. The problem of transition to, and 
evolution of, unsteady flow has, in comparison, received much less attention. 
Moreover, past studies of the transition problem (see Aidun & Steen 1987), have been 
adversely affected by inaccurate calculations and much uncertainty about the 
results. In the main, the causes have been two-fold : first the resolution of thc finite- 
differencc/clement grids has been poor (owing, in part, to limitations on computing 
capacity). Secondly, most of the calculations have been based on time-dependent 
codcs and so the transition point has been inferred from an observed change from 
damped-oscillatory to  true-oscillatory behaviour as the Rayleigh number increases. 

In  recent times this particular porous-medium problem has become recognized as 
an important prototype for a class of (hydrodynamic) systems that exhibit 
transitions from steady to periodic states, and through further periodic and quasi- 
periodic regimes until the system becomes chaotic (Kimura, Schubert & Straus 
1986). The great interest in understanding such behaviour gives additional impetus 
to finding new and improved methods of analysis that will predict the transition 
thresholds and that will provide new insight into how thcy arise. 
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In this study we employ a modcrn cwmputational technique for locating the 
oscillatory instability. The key idea is the recognition that the transition from steady 
to  periodic flow occurs at a Hopf bifurcation in the solution of the steady equations 
that describe the free convection. This Hopf bifurcation is located by constructing an 
extended system of steady equations whose solution yields the critical paramcter 
values at the bifurcation point; the extra equations added to the original set 
represent conditions satisfied a t  thc bifurcation. This approach has several 
advantages over a direct time-dependent simulation. First, the cost of obtaining the 
critical parameters at the threshold is only of the order of nine timcs that of solving 
the steady equations alone. Secondly, the threshold valucx is predicted exactly. at 
least to within the limits of truncation error. Thirdly. with standard continuation 
techniques the variation of the hifurcation point with othcr parameters can be 
obtained in a systematic and efficient way. For examplcx. the threshold for 
oscillations can be determined as a function of as ratio. Fourthly, the grid 
dependencar and ratt  of convcrgcncc of the predicted shold value can he chrcked 
readily. Finally, Hopf bifurcations on branches of tmstuble solutions can bc located. 
a capability that is crucial for the interpretation of maps that delineate domains of 
stability in a two-parameter space. 

In  a container heated from below. convection begins only when thc applied 
temperature (say) exceeds a critical value defined by linear stahili ty theory. The 
resulting convection pattern depends both on the magnitude of the tcmpcrature 
difference (or, more prcciscly, thc Rayleigh number Rn) and on the aspect ratio of the 
cavity. In  a study principally concerned with modal exchange mechanisms in the 
Lapwood problcm, Riley & Winters (1989) showed that thcre is a su 
bifurcations to convective flows, but only the bifurcation with the lowest critical 
Rayleigh number allows flows that are stable at onset. Their study shows. however. 
that sccondary bifurcations on thc othcr convective branches can stabilize the flows 
and so lead to multiple stable solutions with difiering patterns (which in general 
comprise differing numbers of horizontal cwlls, but always with a single vertical cell). 
The effect of rontainer size was studied by continuation methods in order to 
determine the variation with aspect ratio of thcx criticd Rayleigh number of the 
bifurcation points. In this way a stability map was obtained which shows the 
alternative patterns cxpcc d for particular operating conditions. Their stability 
map, however, is not fully detcrmined. for eventually each of the stable modes is 
destabilized by Hopf bifurcations. 

Previous studies of this transition from steady to pcriodic flow have not brought 
out this particular feature of multiple dcstabilization. C'altagirone (1975) identified 
thermal boundary layers as the source of the destabilizing disturbances. He carried 
out finite-difference calculations and mapped out a boundary of instability to 
oscillations as a function of aspect ratio h (width to hcbight). It is unclear from 
Caltagirone's paper, however, to which mode(s) the lwundary wrresponds. There is 
no reason to suppose that, in a cavity of given aspect ratio, each mode undrrgoc.s 
transition at exactly the same Rayleigh number. Aidun & Steen (1987). using an 
eigcnfunction expansion in conjunction with a numerical branch-tracing technique. 
focused on unicellular flow in a syuarc' cavity. They obtained (i) the point of 
transition, RdP) = 390.7, ( i i )  the frequency a t  transition. = 82.8 cycles per 
dimensionless time, and ( i i i )  the detailed structure of the destabilizing disturbance. 
The results ( i )  and (ii) were also found independently 11y Kimura rt al .  (1986). In a 
further study, Steen & Aidun (1988) resolved the form of the destabilizing 
disturbances for 0.5 < h < 1.5. They carefully constructed one-dimcnsional fluid- 
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loop models which clarify the underlying physics of the thermal disturbances. The 
instability occurs as a travelling wave propagating in a closed loop outside a nearly 
motionless core ; the wave specd is determined by an avcrage base-state velocity, and 
the spatial structure by a balance between convection and diffusion. 

Aidun (1987) considered stability of a unicellular-convection roll in a parallelepiped 
cavity with a square cross-section. He found that the roll with (dimensionless) axial 
length h, < 0.115 destabilizes through the Hopf bifurcation a t  Ra@) = 390.7. For 
h, > 0.115, however, it loses stability to a three-dimensional mode at a lower 
Rayleigh number. 

To summarize this previous work: Caltagirone has mapped out a boundary of 
instability to  oscillations for h lying between 0.1 and 1.5; Steen & Aidun have 
analysed the thermal-disturbance structure at the onset of oscillatory motion and 
have calculated transition Hayleigh numbers for h lying between 0.5 and 1.5; Aidun 
has shown that a roll is first destabilized by a Hopf bifurcation when its non- 
dimensional axial length is less than 0.115 and the cross-section of the cavity is 
square. These investigations mainly concern unicellular flow (we believe that 
Caltagirone’s boundary gives the transition point for unicellular flow). There are 
substantially more studics than the ones cited here, especially notable contributions 
by Schubert and Straus : Steen & Aidun (1988) make an excellent survey and we refer 
interested readers t o  their paper. For brevity, we have concentrated on previous 
work of immediate relevance to  the present study. 

Thus we have a good understanding of the steady-to-oscillatory transition for 
unicellular flow in terms of its location and dist)urbance structure. There remain, 
however, open and important questions. What happens to  the transition point for 
unicellular flow when h is greater than 1.5, a regime in which we have already 
revealed complex exchange mechanisms bctween stable steady modes ? What are the 
transition points for multicellular flows and how do they relate to  the multiple steady 
solutions predicted by Riley & Winters ? These arc: the questions we address in this 
study. 

The plan of the paper is as follows : in $2 the govcrning equations are formulated, 
and the underlying symmetries briefly discussed. Then in 53 we describe the 
numerical techniques used for locating the Hopf bifurcation points. In  $ 4  numerical 
results are presented, and finally in $5 the findings are summarized. 

2. Formulation 
2.1. Problem description 

Wc consider a two-dimensional rectangular cavity of height H and aspect ratio h = 
W / H ,  where W is the lateral dimension (width). The cavity comprises a solid matrix 
of porosity 8, permeability K and heat capacity (pc),, saturated by a Darcy fluid with 
thermal expansion coefficient p, of viscosity v and heat capacity (pc),. The saturated 
porous medium is assumed to be in local thermodynamic equilibrium and is taken to 
have a constant effective thermal conductivity k, and heat capacity (pc),, where 

( P C ) *  = E ( P C ) , +  (1 -8) (P),. (2.1) 

All boundaries are assumed impermeable. The upper and lower boundaries are 
isothermal a t  temperatures T, -+AT, T, -k $AT, respectively and AT is taken to  be 
positive so that the cavity is heated from below ; the lateral boundaries of the cavity 
are adiabatic. 
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On invoking the Boussinesq approximation, and assuming that thr Prandtl-Darcy 
number is large so that inertia terms may be neglected. convective flows are governed 
by the dimensionless equations : 

(2.3) 

where (x.y) arc the Cartesian coordinates based at  the centre of the cavity, 

and @, 0 are stream and temperature functions, respectively. Here Ra denotes the 
Darcy-Rayleigh number defined by 

(2.4) 

and quantities have been non-dimensionalized using lengthscales H or W (as 
appropriate), difiusivc velocity scale k , / H ( p c ) ,  and the tempcrature scale AT. 

The governing equations (2.2). (2.3) hold in the region 

SZ = {(x. y) : -0.5 < X' < 0.5, -0.5 < 1/ < 0.5}. (2 .5 )  

while on the boundaries we havc 

2.2. Symmetries 

It is straightforward to show that the governing system of steady equations possesses 
Z ,  x Z ,  symmetry, where the generators of the group are 8,. S,  defined by 

(2.8) 

(2.9) 

S,, S, and 8, S,  represent left-right. up-down and centro-symmetries, respectively. 
lhere exists a pure-conduction solution, viz. 8 = - y, @ = 0, and the bifurcations 
from this trivial solution have distinct symmetry properties depending on the 
number of horizontal cells m and vertical cells n.  A bifurcation to an odd number of 
cells in direction j (,j = x or y )  breaks the symmetry Sj, whilst if Jm- nJ is odd then 
the centro-symmetry S,S, is broken. In addition to the above symmetries the slip 
condition in (2.6) implies a translational invariance (Riley & Winters 1989). 

1' 
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A linear stability analysis of the pure-conduction base state, carried out by Sutton 
(1970) found that eigenmodes exist when the Rayleigh number satisfies 

-2  

(2.10) 

These perturbation eigenmodes represent flows with m horizontal cells and n vertical 
cells and are given by 

Ym, , = sin (mnz) sin (nng), 

ern, , = -RUG;, cos ( m m )  sin (nnq), 

(2.11) 

(2.12) 

where z = x+0.5 and g = y+0.5. 
From (2.10), we see that the neutral stability curves are geometrically similar in 

that Ram, ,(mh) = Ra,, ,(h). The physical interpretation of this result, which is a 
consequence of the slip boundary conditions, is simple. The unicellular flow in a 
cavity of aspect ratio h is identical to one of the cells in the m-cellular flow in a cavity 
of aspect ratio mh, provided that the Rayleigh numbers are the same. 

3. Numerical techniques 

We write the time-dependent equations (2.2), (2.3) as 

3.1. Extended systems 

ax 
at 

M - +AX, A, a)  = 0, 

where f is a smooth nonlinear function, x is the solution vector, A is the bifurcation 
parameter Ra, a is the control parameter h, and M is a singular 2 x 2 diagonal matrix 
with principal elements (0 , l ) .  

The steady-state form of equation (3.1) is obtained by setting the time derivatives 
to  zero to give 

A X , , A , 4  = 0 ,  (3.2) 

where x, is a steady solution which may be non-unique for certain values of ( A ,  a).  
If the solution of the time-dependent equation (3.1) converges to  a steady state for 
large t ,  then this steady solution is linearly stable and will satisfy the steady equation 
(3.2). The converse is not true, since steady solutions of (3.2) are not necessarily 
solutions of (3.1) in the sense that all steady solutions may be unstable to 
infinitesimally small perturbations. Indeed (3.2) may have solutions at parameter 
values for which the time-dependent equations possess no realizable steady solution, 
as in Poiseuille flow in a pipe a t  large Reynolds number. We shall be concerned in 
particular with the transition between steady and oscillatory behaviour in the 
solution of (3.1) as the parameter A passes through a critical value. 

We now describe how the critical value €or the oscillatory transition can be found 
from the steady equation (3.2) alone. Consider the linear stability of the steady 
solution x, to a small perturbation x, .  By linearizing (3.1) about x, we find that x,  
satisfies 

ax 
at 

M-- l+f , (x , ,A ,a)x ,  = 0,  (3.3) 
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x l ( t )  = ceeat<, (3.4) 

where E is the component of x1 along < at t = 0 and 5 is a generalized eigenvector of 
the Jacobian matrix f,(x,, A,  a )  with eigcnvalue (T given by the generalized eigenvalue 
problem 

Thus the steady solution x,, is lincarly stable if all the eigenvalues CT have positive real 
part, but the linear stability changes if one or more eigenvalues crosses the imaginary 
axis as the parameter h increases. Since the Jacobian matrix is real it may have both 
real and complex-conjugate pairs of eigenvalues and there are two different ways in 
which this loss of stability can occur. First, a real eigenvalue may cross the imaginary 
axis for increasing A,  so that a value of A exists at which IT = 0, the Jacobian matrix 
is singular, and from the Implicit Function Theorem the uniqueness of x, is not 
guaranteed. The critical h at which this occurs is a singular point of the steady 
equation (3.2) and bifurcation of the steady solution may occur. Second, a complex- 
conjugate pair may cross the imaginary axis for increasing A,  so that a value of h 
exists at which (T = f iw and there is an oscillatory solution x of the time-dependent 
equation (3.1) with angular frequency w and zero amplitude. The critical value of A 
in this case defines a Hopf bifurcation point of the steady equation (3.2), but it should 
be stressed that the Jacobian matrix is not singular and so the solution x,, is unique 
in the neighbourhood of this point ; thcre is no bifurcation of the steady solution x,. 
Above the threshold for oscillations the steady solution x,, may undergo further Hopf 
bifurcation as other complex-conjugate pairs of eigenvalues cross into the negative 
half-plane ; although the Hopf points themselves have no physical significance, since 
xo is no longer a solution of the timc-dcpendent equation (3.1) a t  large t ,  the branches 
of unstable oscillatory flows to which they give rise may interact with the stable 
oscillatory mode arising at the lowest bifurcation. 

To locate Hopf bifurcations in the steady equations we implement a technique 
proposed by Jepson (1981) and Griewank & Reddicn (1983) in which the following 
extended set of cyuations is solved : 

f,t = UMt. (3.5) 

(3.6) 

The functions tR and t1 are the real and imaginary parts of the right eigenvector of 
the Jacobian matrix and the last two equations in the set are normalization 
conditions which use some linear functional I (in our computations we scale the 
eigenvector so that a fixed component takes the value i). The solution of these 
nonlinear equations by Newton’s method gives successive approximations to x,, tR, 
tI, A and w that  converge quadratically to their values at the Hopf bifurcation point 
A = A,, for a good-enough initial guess. We compute the variation of the solution 
with the control parameter a using pseudo-arclength continuation (Keller 1977). 

We note from (3.4) that  in the neighbourhood of the Hopf point the time- 
dependent solution behaves as 

x ( t )  = x,+~{cos (wt)tR-sin ( w t ) t I } ,  (3.7) 
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with the amplitude E behaving as (h-A,): (Joseph & Sattinger 1972). We may use 
(3.7) with an assumed value of E to visualize the oscillatory flow arising at the Hopf 
bifurcation. 

3.2. Finite-element approximation 

Following Riley & Winters (1989, 1990), the steady equation (3.2) and the extended 
system (3.6) were solved in a standard Galerkin form of the finite-element method. 
The equations were discretized using a grid of nine-node quadrilateral elements with 
quadratic interpolation for the stream function and the temperature. 

The equations were linearized by the Newton-Raphson method, and the algebraic 
equations for the unknown nodal values were solved directly by a standard frontal 
method. The cost of solving the extended system (3.6) is of the order of nine times 
that of solving the steady equations (3.2) alone, with an appropriate two-step 
Newton-Raphson linearization. 

All the computations were carried out on the CRAY-2 at Harwell. 

4. Results 
Before presenting our new results, it is necessary to set them in the context of our 

previous work (Riley & Winters 1989, 1990). In figure 1 we reproduce the Calculated 
bifurcation diagram for a square cavity as the Rayleigh number varies. The 
measure used is the temperature a t  the mid-point of the left-hand vertical boundary 
and stable solutions are denoted by solid lines. We see that the unicellular flow is 
stable from onset a t  Ra = 4n2, the bicellular flow is stabilized by the secondary 
bifurcation a t  Ma (Ra = 81.01), whilst the tricellular flow is stabilized by the second 
secondary a t  UV (Ra = 160.25). Along each of the modal branches we expect that 
there is eventually a Hopf bifurcation which destabilizes these flows. Aidun & Steen 
(1987), using an eigenfunction expansion and branch-tracing technique (i.e. Doedel’s 
1981 AUTO package), determined that a Hopf bifurcation occurs a t  Ra = 390.7 
along the unicellular branch. They predicted that the angular frequency of 
oscillations a t  onset is 520.25 rad per dimensionless time, based on a frequency scale 
of L , / H 2 ( p c ) , .  This is in excellent accord with the independent calculation of Kimura, 
Schubert & Straus (1987), who used a pseudo-spectral scheme and linear stability 
analysis. To our knowledge, nobody has calculated corresponding Hopf bifurcation 
points along the multicellular branches. 

In the present study, we first Confirmed the location of the Hopf bifurcation along 
the unicellular branch in a square cavity. The results of our numerical calculations 
based on five different grids are given in table 1, which also shows the values 
predicted at zero mesh size through Richardson extrapolation. On the finest grid, 
both the predicted critical Rayleigh number and angular frequency agree to four 
significant figures with the results from the computations of Aidun & Steen (1987). 
I n  contrast to Aidun & Steen, we found no indication of anything other than a 
bifurcation of Hopf type a t  this Rayleigh number, and we found the location of the 
bifurcation point to be insensitive to  the grid resolution in our extended-system 
approach. Even for the crudest grid we located both the position of the Hopf 
bifurcation point and the frequency to within 0.5 %. Figure 2 shows the streamlines 
and isotherms of the steady unicellular solution, and the real and imaginary parts of 
the eigenvector at the bifurcation point, calculated using an 8 x 8 grid. The steady 
flow circulates clockwise and accelerates (in a Lagrangian sense) a t  the upper right 
and lower left corners under the action of buoyancy forces. The hot upflow (cold 
downflow) compresses the horizontal thermal boundary layer near the corner. The 
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FIQURE 1. Computed bifurcation structure at  h = 1 showing the three lowest modes. Stable/ 
unstable branches are denoted by full/broken curves. The measure used is the temperature a t  
( 4 . 0 ) .  

Rayleigh Angular 
Grid number frequency 

8 x 8  392.8113 519.371 
12 x 12 391.1723 519.9326 
16x 16 390.8702 520.1151 
24 x 24 390.751 1 520.1709 
32 x 32 390.7309 520.1801 

Extrapolated 390.7201 520.1863 

TABLE 1. Critical Rayleigh number and frequency at the Hopf bifurcation along the unicellular 
branch in a square cavity for different grids. 

characteristic S-shape in the isotherms shows that they have overturned, leading to 
a stable stratification in the core which inhibits the flow there. In the eigenvector 
plots, regions where the disturbances possess positive vorticity (corresponding to 
clockwise rotation) or positive temperature are delineated by the solid curves. On 
comparing the real (imaginary) streamline and isotherm plots, we see that the 
disturbance upflows and downflows generally coincide with positive and negative 
temperatures, respectively. Given that the directions of the flow and buoyancy forces 
associated with the disturbances correlate well, one may deduce that the structure 
of the disturbances is independent of the base flow. This observation by Steen & 
Aidun (1988) provided the motivation for the fluid-loop modelling that they 
undertook. 

The nature of the oscillatory convection at a Rayleigh number near the critical 
value may be determined from (3.7). Figure 3 shows the change in the flow and 
temperature distributions during one oscillation of the periodic ‘unicellular ’ flow in 
a square cavity. Here the flow is represented by streamlines computed from the 
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Stream function 

FIGURE 2. Streamlines and isotherms for 

Base solution 

Real part of 
eigenvcctor 

Imaginary part 
of eigenvector 

Temperature 

the steady solution and the real and imaginary parts of 
the critical eigenvector at the Hopf bifurcation point. Kote that the plots are rentro-symmetric. 

instantancous velocity field, and E is arbitrarily set equal t o  0.1 1. The visualizations 
clearly show that,  during the cycle, instabilities arise in the thermal boundary layers 
along the horizontal walls and are advected around the cavity by the base flow. Steen 
& Aidun showed the evolution of the disturbance structure itself, as defined by 
x ( t ) - x x ,  in (3.7). This evolution (Steen & Aidun 1988, figure 2) is interesting: five 
thermal disturbances circulate with the base flow outside a nearly motionlcss core. 
Moreover, four vorticity disturbances complete a cycle in the same time as the 
thermals and therefore travel with a 25 YO greater wave speed ; vorticity disturbances 
pass the thermal disturbances along the adiabatic sidewalls. 

In figure 4 we display the predictions, obtained using a 16 x 16 grid, of t h e  
variation with h of the oentro-symmetry-preserving Hopf bifurcation point that  was 
located along thc unicellular branch at Ra = 390.7 when h = 1. As we movc from 
h = 1 to higher aspect ratio, the locus of the critical Rayleigh number is simple up to 
h = 2.4: the point moves to  lower Rayleigh numbers as the aspect ratio increases 
(figure 4a);  the associatcd frequency at onset also decreases, as might be anticipated 
from energy considerations (figure 4b). The computations of Steen & Aidun were 
carried out for 0.5 < h < 1.5; their results for h = 1 and 1.5 agree well with ours and 
are supcrposed on figure 4. For h > 2.4, however, the structure is more involved and 
intriguing: a curlicue forms as the path winds back on itself. 

To interpret this feature, we first have to review the underlying bifurcation 
structure of the solution branches. Figure 5 shows schematically the state diagram 
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FIGURE 4. 

I .o 1.5 2.0 2.5 3.0 
200 

Aspect ratio 

500 

I I " 
1 .o 1.5 2.0 2.5 3.0 

Aspect ratio 

(a )  Computed path of Hopf bifurcation points, ( b )  corresponding variation 
frequency. The full circles show the calculated results of Stem and Aidun. 

in angular 

that we believe obtains a t  h = 2.1. This particular aspect ratio lies outside the range 
of our previous investigations, but we have inferred the structure from them and 
confirmed the most relevant part through new computations. This figure, which 
displays only those branches connected with the Hopf bifurcation structure, is a 
composite drawn from the information contained in figures 10, 15(c) and 1 7 ( b )  of 
Riley dz Winters (1989) and figure 8 of Riley & Winters (1990). Note that the 
labelling is the same as in our previous work except for the secondary bifurcations 
marked s which arise from the exchange between the ( 1 , l )  and ( 4 , l )  modes at 
h = 2. This exchange also accounts for the extra negative eigenvalue on the branches 
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Streamlines Isotherms 

FIGURE 5.  Conjectured state diagram when h = 2.1. The heavy line between O P  and H, denotes 
a stable flow : all other branches correspond to  unstable flows. 

passing through bB (or P,) in figure 5 compared with figure 15 of Riley & Winters 
(1989). Further, the kinks appearing in the branches OPce, together with the 
associated limit points I,, l,, did not feature in this work; we explain their presence 
below. Stable unicellular flow exists along the branch OPH,, and the Hopf 
bifurcation point that we are following is labelled H,. 

To describe how the schema has been determined, we start a t  h = 1 with the 
computed state diagram, figure 10 in Riley & Winters (1989) (or figure 1 in the 
present work), together with its conjectured extension to  large Rayleigh number, 
figure 8 in Riley & Winters (1990). Note that this latter figure reflects two 
assumptions : (i) that the subcritical branches arising at  the transcritical secondary 
bifurcation (S3,1) from the three-ccll solution merge a t  the limit point 1, with the 
primary one-cell branches, and (ii) that the branches arising at  the secondary 
bifurcation (S2,,) from the two-cell solution form a closed loop, and this loop of 
asymmetric solutions bifurcates from the one-cell branch a t  the point pz. Now as h 
passes through 4 2 ,  the primary one- and two-cell branches swap priority and thcrc 
is a transfer of the secondaries from the two-cell to the one-cell branches. As h passes 
through d3, the supercritical branches arising a t  the transcritical secondary 
bifurcation from the primary three-cell solution and the unicellular branch split and 
merge, and the resulting mixed branches disconnect, figure 15 in Riley & Winters 
(1989). The associated subcritical branches form a new primary branch, which we 
term the one-cell branch since this is the form of the eigenvector of the Jacobian 
matrix a t  the bifurcation point. As h increases further, the secondary bifurcation 
which was on the old one-cell primary branch and is now on the disconnected branch 
interacts with a tertiary bifurcation which was on the old transcritical secondary 
branch and the resulting mixed branches disconnect, figure 17 in Riley & Winters 
(1989). Thus, in figure 5 ,  the limit points O P  and NQ arise through the disconnections 
of the merged primary one-cell and secondary transcritical branches, and the merged 
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FIGURE 6. Computed state diagram at h = 2.1. 

secondary and tertiary branches, respectively. The rest of the picture follows from 
continuity; we have confirmed the new feature in the structure, i.e. the limit points 
1, and l,, by computing the solution branch H,OPl,l,(ce) at h = 2.1, as shown in 
figure 6. 

In figure 7 (a)  we have enlarged the view of the curlicue structure shown in figure 
4 (a)  and have included paths of singular points necessary for its interpretation, 
computed on a 16 x 16 grid. The path OPP’ corresponds to the locus of the limit point 
OP in figure 5 .  The paths 1,t and 1,t (see inset) are the loci of the limit points 1, and 
1, shown in figure 5 ,  which arise when the solution branch buckles a t  the non- 
degenerate hysteresis point t, (h,Ra) = (2.2!365,274.78). 

We are now in a position to explain the evolution of the state diagram as h 
increases above 2.1, and the curlicue structure. At the double Hopf point v,  (h ,Ra)  
= (2.236,258), in figure 7 (a) ,  a pair of Hopf bifurcations H,, H, arises along the 
solution branch OP1, (figure 7b). At (h ,Ra)  = (2.2848,274.662), the point u in the 
inset to figure 7 ( a ) ,  a further Hopf bifurcation point H, is created at the limit point 
1, (figure 7c); we find that, as expected, the frequency of oscillation associated with 
H, goes to zero at  this Takens-Bogdanov point. We have not indicated the path of 
homoclinic bifurcations that arises a t  the Takens-Bogdanov point (Healey et al. 
1990), but we note that its presence implies complicated dynamical behaviour in the 
neighbourhood of the point u,  with the possibility of chaos being induced through the 
variation of a second parameter. In this instance, however, such complex effects 
would appear only in the transient response to a perturbation, if at all, since the 
Takens-Bogdanov point is located on the unstable part of the solution branch. 

Next, as h increases further, the limit points 1, and 1, coalesce at  the non- 
degenerate hysteresis point t (figure 7d), followed by the coalescence of the Hopf 
points H, and H, at  the point x (figure 7 e ) .  Then the Hopf point H, tracks towards 
the limit point OP, and moves around it (figure 7f) .  This features in figure 7(a) at  
P, the osculation point of the limit-point path OPP’ with the path of Hopf 
bifurcation points H,wH,. As h increases further the pair of Hopf points HI, which 
has been tracking back towards the limit point OP, and H, coincide at  the point w, 
(h,Ra) = (2.691,250) in figure 7(a), as shown in figure 7(g).  Thus the two Hopf 
bifurcations interact a t  w with two possible consequences for the periodic flows 
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FIGURE 8. Map showing the domain of existence of stable unicellular flow. 

Rayleigh Angular 
Grid number frequency 

8 x 8  400.1835 47 1.039 
1 6 x 8  392.8113 519.371 

TABLE 2. Rayleigh number and frequency at the Hopf bifurcation along the bicellular branch 
when h = 2 for different grids. 

arising a t  these bifurcations : either they arc: annihilated (at  an isola formation point) 
or disconnected branches of stable periodic flows are formed (at a coalescence point). 
We do not yet have the computational techniques to  resolve these different 
possibilities. We note that the isola-formation/coalescence points are not double 
eigenvalues : the time-dependent flow in the neighbourhood of these points is simply 
periodic. 

As regards the steady unicellular flow, it is stable for Rayleigh numbers lying 
inside the curve OPwH, in figure 7 (a) .  In  figure 8 we clarify the domain of existence 
of stable unicellular flow in (h, Ra)-space. This reveals the unexpectedly complicated 
shape of the stability boundaries. Clearly, the explanation of such a complex shape 
can only bc found in the analysis of the bifurcation structure of both stable and 
unstable solutions of the steady-state equations. 

We now havc a complete description of thc stability of unicellular flow to two- 
dimensional disturbances, but what about multicellular flows ! As alluded to in $2, 
a consequence of the slip-boundary conditions is that the unicellular solution in a 
square cavity also describes the bicellular flow in a cavity with aspect ratio h = 2, the 
tricellular flow when h = 3, and so on. This suggests that, similarly, the symmetry- 
preserving Hopf bifurcation on the unicellular branch is simply related to those 
occurring on multicellular branches when h is such that the cells are ‘square’. 

This indeed turns out to be the case: as we see in table 2, the bicellular branch at  
h = 2 has a (symmetry-preserving) Hopf bifurcation which, if the grids have 
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FIQURE 9. Geometrically constructed Hopf-bifurcation paths for the multicellular modes 

equivalent resolution (e.g. 16 x 8 when h = 2 and 8 x 8 when h = l ) ,  is located a t  
exactly the same Rayleigh number as the unicellular Hopf bifurcation a t  h = 1. This 
geometrical-similarity property generalizes : for a cavity with aspect ratio NH,  the N- 
cellular branch has a symmetry-preserving Hopf bifurcation point at the same 
Rayleigh number as the symmetry-preserving Hopf bifurcation on the unicellular 
branch in a cavity with aspect ratio H .  Thus we may determine an upper stability 
limit for the multicellular flows by calculating, as h varies, the locus of the symmetry- 
preserving Hopf bifurcation point along the unicellular solution branch and then 
applying the similarity condition; figure 9 shows thc result. We should stress, 
however, that this process only provides an upper stability limit. For cavities with 
h - N ,  we believe that, along the N-cellular branch, it is the symmetry-preserving 
Hopf bifurcation that has the lowest critical Rayleigh number. For other aspect 
ratios, however, there may be other symmetry-breaking Hopf bifurcations with lower 
critical Rayleigh numbers. Thus we cannot state with certainty that we have 
calculated the upper stability limit for each mode. At the moment, this can only be 
determined by performing a very expensive full eigenvalue calculation for each 
solution a t  each Rayleigh number and aspect ratio. 

Aidun (1 987) uses a similar geometrical argument in his study of three-dimensional 
stability of unicellular flow. His results are also subject to the qualification that other 
instabilities may have onset before the symmetry-preserving ones that he considers. 

5. Conclusions 
Steady unicellular flow in a square cavity is stable from onset a t  Ra = Rap) = 4 9  

until i t  is destabilized by a Hopf bifurcation to oscillatory flow a t  Ra = RaiP) = 390.7. 
As the cavity becomes flatter (larger aspect ratio), the flow becomes less stable : it is 
realizable (stable) only when Rat’ < Ra < Ra$’), where Rap) < R a t )  and RaiP) < 
RaiP), that  is an increasingly narrow range of Rayleigh number for increasing aspect 
ratio. Steen & Aidun (1988), in a study mainly concerned with transition mechanisms 
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per se, followed the position of the Hopf bifurcation until the cavity was 50 YO longer 
than it was high, and they confirmed this destabilization. They did not, however, 
comment on the onset of the unicellular flow after the modal exchange with the 
bicellular flow at h = 4 2 .  

In  this study, we have followed the paths of the points of onset and destabilization 
of the steady unicellular flow, and have uncovered a curious structure. On continuing 
the calculations for values of the aspect ratio greater than 1.5, we discovered that the 
path of Hopf bifurcations develops a curlicue. After determining the structure of the 
state diagram we were able to interpret this feature : as the aspect ratio increases, two 
pairs of Hopf bifurcations arise spontaneously. One of these interacts with a further 
Hopf bifurcation which arises at a limit point formed by a buckling of the solution 
branch, whilst the other tracks along the solution branch in the opposite direction. 
This Hopf bifurcation eventually destabilizes the unicellular flow completely ; finally 
interacting with the original Hopf bifurcation (the one arising a t  Ra = 390.7 in the 
square cavity), it leaves the unicellular branch. This behaviour determines an upper 
limit of h = 2.691 on the largest aspect ratio for which unicellular flow is stable. 

In a cavity of given aspect ratio, stable, steady multicellular flows may exist (Riley 
& Winters 1989) as alternative states to the unicellular flow usually considered. As 
far as we are able to ascertain, nobody has addressed the problem of the 
destabilization of these alternative modes of convection. By employing a simple 
similarity argument, we generated an upper stability bound for these multicellular 
flows and we were able to deduce that stable m-cell flows exist only for h < 2.691m. 

The present technique locates the onset of instability exactly, unlike transient 
calculations where there may be considerablc uncertainty in distinguishing true 
oscillatory behaviour from transient oscillations which decay to  a steady state over 
a long timescale. A further advantage of the present approach is that, having located 
a bifurcation point for a particular case (here for Unicellular flow in a square cavity), 
we can obtain by parameter continuation the variation of the critical Rayleigh 
numbcr and frequency as the aspect ratio varies. The complexity of the stability map 
for the unicellular flow (figure 8) illustrates that  it is only by following unstable, as 
well as stable, modes that we can obtain the full picture. General time-dependent 
calculations would not be effective in obtaining this result. A limitation of the 
present implementation of our numerical techniques is that we are unable to 
determine whether the Hopf bifurcations are sub- or supercritical. We are currently 
extending our approach to  address this important issue. 

The work described here is part of the longer term research carried out within the 
Underlying Programme of the United Kingdom Atomic Energy Authority. 
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